Skip to main content

How to remove warnings of Axial force and Axial moment in Plinth beams

 


Tekla Structural Designer is an advanced software used for Structural Analysis and Design of a Building. In Tekla we can do detailing of steel structures as well as RCC structures. We can create RCC buildings and we can insert the rebars in Tekla structures Designer software.  We can also do the form works and structural drawing without the help of any other softwares .

So let’s go step by step to remove warnings of axial force and axial moment in plinth beams:

Step 1

We have a model which is fully loaded and designed. As we can see there is a warning which is showing in all the plinth beams. Actually, this is a common warning which is shown in most of the cases. We will just right click on it, Check member then go to static option and also to design member static. So there we can find the spelling due to axial force and minor axis moment.

Fig.1

 

Step 2

Now, we will go to the Result view and then we will just try to find out the axial force due to in particular loads combination. So as we can see, this is an axial force which has been generated. It is the highest at the bottom level. So this axial force creates a kind of push and pull in a particular building. 

 

Fig.2

Step 3

If we go back to the structure view and switch on the Dead imposed load and  we don’t have any particular slab here and there is no imposed load applied. So the moment is unable to balance it but on site we can apply some PCC after the sand filling inside the periphery wall. So we can do something in the software to balance it by applying some methods.

 

Fig.3

Step 4

Next fig. 4 is our base. So let’s go to the Model and select the steel deck. So we will just select some steel deck and provide it with a lambda structure and we can provide the level load in the dead load section of 5 KN/m2.

So we have provided the dead loads. So the purpose is to create some moments so that it can balance the particular axial force generated. So we move to design and then design house static.

So after the design, as we can see now we don’t have any warnings. So the beams are either passing or failing. So we can just click on it and just change the properties of the member and we can make the beam pass

 

Fig.4

 

 

 

.For more details, watch this: 

Tekla Structural Designer: Removing Warnings of Axial Force and Axial Moment in Plinth Beams


What is TEKLA? | TEKLA Structural Designer | CIVIL CENTER


About us: Civil Center is a Civil Engineering Consultancy company which provides services ranging from Building Consultancy Services like Architectural Plan, Structural Drawing, Estimation, 3D Views of Interior and Exterior of a Building, Construction Planning and Management, and also other services like Survey Investigation Works.


We also provide Industrial Training to Civil Engineering Students as well as professionals which include courses on Building Design, Detailing Estimation, 3D Modelling and Survey by using Software like STAAD. Pro, Tekla Structural Designer, Revit Structures, Tekla Structures, MS Excel, E-Survey. In training, our goal is to make our trainees ready for the industry by getting them trained in Live Projects. We also provide placement assistance to our trainees.

To join our live classes on Tekla Structural Designer and other courses related to Civil Engineering, click here : https://forms.gle/Yy9j8BH8zZzmFfZMA

For any query 

Call on: 8433248864

WhatsApp: +91 6372905201

Email: team@civilcenter.in


If you have any requirement of Building Consultancy Services like Architectural Plan, Structural Drawings etc., register using the link given below

https://forms.gle/M4MTqgcLP6ZEp4rs7

Whatsapp: +91 6372905201

Email: enquiry@civilcenter.in

Visit our Website: http://www.civilcenter.in/


Visit our Website: http://www.civilcenter.in/


You Can Find Us On Other Social Media

Follow us on Telegram :https://t.me/civilcenter17

Visit our Facebook Page: https://www.facebook.com/civilcenter/

Visit our LinkedIn Page: https://www.linkedin.com/company/civil-center

Follow our Twitter Handle: https://twitter.com/_CivilCenter

Follow us on Instagram: https://www.instagram.com/civilcenter17/

Comments

Popular posts from this blog

How to study the Reinforcement Drawings of beams which have been generated in TSD.

Tekla Structural Designer is advanced software used for Structural Analysis and Design of a Building. In Tekla, we can do the detailing of steel structures as well as RCC structures. We can create RCC buildings and we can insert the rebars in Tekla structures Designer software.  We can also do the form works and structural drawing without the help of any other software. Let’s go step by step to learn how to study the Reinforcement Drawings of beams that have been generated in TSD. Step 1 As we can see, this building has been fully designed and analysed. Now, just right click on the beam then click on the report for the member and it will generate the report for the member and we will see this and after that, we can also check the file for the particular beam.     Fig.1 Step 2 Now we have 3 numbers of sections, for each beam, it has been made and the respective cross-section is also given. Step 3 Now if we just go through the drawing, we can see that we have 2 bars of 16mm at the top an

How to Provide Reinforcement in multiple columns in Tekla Structures

  Tekla Structures is a Building Information Modeling (BIM) software able to model structures that incorporate different kinds of building materials, including steel, concrete, timber and glass. However it is widely used for the detailing of structural drawing.  In this blog, we are going to discuss how  to provide reinforcement in multiple columns in Tekla Structures.  So let's start the step by step procedure Step 1 : At first we must make sure that our model is correct and after that we will look for the column reinforcement application.   Step 2 : Search result will give us lots of options which includes application of column (for both the RCC and steel).  Step 3 : Now from there we have to select an app for RCC. column.  Step 4 : We will go for Application no. 57 which is "Column automated reinforcement layout". Step 5 : Select and define the application according to our requirement. Now select all the columns by dragging the mouse from right to left. It will select

STAAD Pro Vs Tekla Structural Designer .Which One Is Better ?

  Tekla Structural Designer (TSD) is a simple, integrated design & analysis software that enables engineers to deliver safe, effective and rationalized design more quickly, regardless of structural material. Reinforcement drawings for the entire building or tonnes of steel for estimating and many more.    So in the above image you can see the first image is created in Tekla Structural Designer (TSD) and in the second image the model has been created in Staad Pro  . we can start the comparison with the grid lines. So for creating grid lines in staad we need to enter the coordinates from the beam column plan as shown in fig.1 and we need to insert it while viewing the beam column plan. Fig 1 We can create grid lines in Tekla Structural Designer directly and in addition        you can also import the beam column plan as shadow as shown in fig 2 .  Fig. 2 • Next step is adding members in staad pro so in addition we need to see the beam column plan again and again so that we can place